72 research outputs found

    Bi-Static Radar Cross-Section Test Method by using Historic Marconi Set-up and Time Gating

    Get PDF
    In this paper, a low-cost, simple, and reliable bi-static radar cross-section (RCS) measurement method by using a historic Marconi set-up is presented. It uses a transmitting (Tx) antenna (located at a constant position, at a reference angle of θ=0∘θ=0∘) and a moving receiver (Rx) antenna. A time gating method is used to extract the information from the reflection in the time domain; applying time filter allows removing the antenna side-lobe effects and other ambient noises. In this method, the Rx antenna (on the movable arm) is used to measure the reflected field in the angular range from 1∘1∘ to 90∘90∘ from the structure (printed circuit board, PCB) and the reference configuration represented by a ground (GND) plane of the same dimension. The time gating method is then applied to each pair of PCB/GND measurements to extract the bi-static RCS pattern of the structure at a given frequency. Here, a comparison of measurement results is carried out at 18 and 32 GHz with simulation ones indicating successful performance of the proposed method. It can be used as a low-cost, reliable, and available option in future measurement and scientificresearch

    Determination reflection and transmission coefficients of lanthanum iron garnet filled PVDF-polymer nanocomposite using finite element method modeling at microwave frequencies

    Get PDF
    In our previous work, the lanthanum iron garnet-filled PVDF-polymer nanocomposite has been prepared. The reflection and transmission coefficients of PVDF/LIG were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) at X-band frequencies (8 GHz 12 GHz). In this study, the distribution of electric field intensity of PVDF/LIG which was loaded in rectangular waveguide was simulated based on Finite Element Method (FEM) formulation to show the essential differences of intensity of emitted electrical field. The computations of reflection and transmission coefficients of PVDF/ LIG were determined by using implementation FEM modeling rectangular waveguide. The FEM results were compared with the experimental achievement results using the rectangular waveguide. An excellent agreement between measured and simulated results was obtained based on the values of mean relative errors

    The Combined Effect of Photobiomodulation and Curcumin on Acute Skin Wound Healing in Rats

    Get PDF
    Introduction: Abnormal wound repair is a cause for a considerable expense, as well as patient morbidity and mortality. Here, we investigated the combined impact of photobiomodulation (PBM) and curcumin on a rat experimental model of an acute skin wound.Methods: A round full-thickness wound was created on the back of each rat. We divided the rats into the following four groups. Group one was the control group. Group two received pulse wave (PW) PBM at a dose of 890 nm, 80 Hz, and 0.2 J/cm2. Group 3 received 40 mg/kg curcumin by gastric gavage and group 4 was treated with PWPBM + curcumin. We measured the wound area on days 4, 7, and 15, and performed microbiologically and tensiometry examinations.Results: There was markedly improved wound contraction in the curcumin (7.5 ± 0.57; P=0.000), PBM (8.5 ± 1.2; P=0.000), and PBM + curcumin (14.5 ± 4.3; P=0.002) groups relative to the control group (25 ± 6). PBM (100 ± 7.3; P=0.005), and PBM + curcumin (98 ± 6; P=0.005) groups meaningfully improved tensile strength relative to the control group (61 ± 8.2). On day 15, the PBM (10 ± 5; P=0.000), curcumin (14 ± 4.5, P=0.000), and PBM + curcumin (27.3 ± 8.3; P=0.000) groups meaningfully decreased microbial flora relative to the control group (95 ± 6).Conclusion: We concluded that the PBM and PBM + curcumin groups meaningfully accelerated wound healing of the acute skin wound in the rats. The results of the PBM group were statistically more effective than the curcumin alone and PBM + curcumin-treated groups. DOI:10.34172/jlms.2021.0

    Cloning of the Recombinant Cytochrome P450 Cyp141 Protein of Mycobacterium tuberculosis as a Diagnostic Target and Vaccine Candidate

    Get PDF
    Background: Tuberculosis has been announced as a global emergency by World Health Organization and the second infectious agent of mortality worldwide. The general policy in the development of new vaccines is to develop some vaccines with higher efficiency not only for infants but also for adults compared with the Bacillus Calmette-Guerin vaccine. Recently, cytochrome P450 cyp141 has been introduced as a new target for detecting Mycobacterium tuberculosis from clinical samples. Objectives: The aim of this study was to clone this gene in order to pave the way for more evaluation. Materials and Methods: M. tuberculosis H37Rv DNA was extracted by a standard phenol-chlorophorm protocol. After designing the specific primers, P450 cyp141 gene was replicated by PCR. The purified PCR products were then subcloned into the pTZ57R/T plasmid vector. After extraction, enzyme digestion, and recombinant pTZ57R/T-cyp141 plasmid vector sequencing, the aforementioned products were cloned into a pET-26b plasmid vector. Then, the recombinant pET26b-cyp141 plasmid molecules were transformed to Escherichia coli strain BL21 (DE3) using the transformation method. Next, the recombinant pET26b-cyp141 plasmids were purified and evaluated by the enzyme digestion analysis. Results: The cloning of P450 cyp141 gene was confirmed by the enzyme digestion and sequencing of the recombinant pTZ57R/T-cyp141 and pET26b-cyp141 plasmid vectors. Conclusions: The results of this study demonstrated that the P450 cyp141 gene was successfully cloned into a pET26b plasmid vector as an expression vector. In this paper, for the first time in Iran, this gene was cloned for more purposes, including the expression and purification of the recombinant cytochrome P450 cyp141 protein

    Comparison of Vibration Amplitude in Isfahan Subway Due to Track Structure- An Experimental Study

    Get PDF
    Increasing the stability of structures and reducing the maintenance cost of slab track superstructures compared to ballasted tracks are among the reasons for the tendency to use this category of superstructures in the railway industry. Vibration reduction methods can be divided into three categories, source, propagation path, and receiver. In general, the slab track structures in Iran are divided into three categories: direct fixation track (DFT), floating slab track (FST), and high resilient fastener (HRF). Although railway tracks are a safe, economical and fast transportation system and can lead to the strengthening of the tourism industry, in the long term, vibrations can damage many historical structures in the city of Isfahan. FST and HRF systems are used in the structure of Isfahan subway track. In this paper, the accelerations (longitudinal, lateral, and vertical) of the Isfahan subway vehicle were measured in 30 stations (15 go stations and 15 return stations). The results showed that the HRF system compared to the FST has a significant effect in reducing the range of vibrations and ultimately the safety of the train and the ride comfort. For example, in the area between Si-O-Se-Pol and Imam Hossein Square, due to the track structure type (HRF), the maximum acceleration and RMS acceleration are in the range of 1.5 and 0.3 m/s2, respectively, while in other stations these values were extracted up to 4 and 0.7 m/s2, respectively

    The Effectiveness of Psychological Well-being Training on Negative Automatic Thoughts and Resilience of Female Adolescents with Rumination in Tehran

    Get PDF
    Background: While there is a strong link between rumination and internalizing psychopathology over the lifespan, the development of rumination is not well understood. This study aimed at investigating the effectiveness of psychological well-being training on negative automatic thoughts and resilience of female adolescents with rumination in Tehran. Methods: The present study followed a quasi-experimental pretest-posttest design with a control group. The study population was all female adolescents with rumination in District 6, Tehran, Iran in 2018-2019. Sample of the study included 30 adolescent girls with rumination, referred to counseling centers and psychological services in Tehran. They were selected through convenience sampling and randomly assigned to experimental (n = 15) and control (n = 15) groups. The experimental group received psychological well-being interventions (10 one-hour training sessions, one session per week). Then, female adolescents with rumination in both groups underwent a posttest. The instruments used included the Negative Automatic Thoughts Questionnaire (ATQ-N, Ingram et al. 1995), and the Resilience Questionnaire (Connor and Davidson, 2003). The data were analyzed by SPSS software version 23. Results: The results showed that 6.6% in the experimental group and 11.11% in the control group were 14 years old. Moreover, psychological well-being training was significantly effective in negative automatic thoughts (F= 50.89, P=0.001), and resilience (F= 1.24, P=0.001) of adolescents with rumination (p>0.05). Conclusion: The 10-session Psychological well-being training was effective on negative automatic thoughts and resilience of adolescents with rumination in Tehran

    DNA Methylation and Histone Acetylation Patterns in Cultured Bovine Adipose Tissue-Derived Stem Cells (BADSCs)

    Get PDF
    Objective: Many studies have focused on the epigenetic characteristics of donor cells to improve somatic cell nuclear transfer (SCNT). We hypothesized that the epigenetic status and chromatin structure of undifferentiated bovine adipose tissue-derived stem cells (BADSCs) would not remain constant during different passages. The objective of this study was to determine the mRNA expression patterns of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and histone deacetyltransferses (HDAC1, HDAC2, HDAC3) in BADSCs. In addition, we compared the measured levels of octamer binding protein-4 expression (OCT4) and acetylation of H3K9 (H3K9ac) in BADSCs cultures and different passages in vitro. Materials and Methods: In this experimental study, subcutaneous fat was obtained from adult cows immediately post-mortem. Relative level of DNMTs and HDACs was examined using quantitative real time polymerase chain reaction (q-PCR), and the level of OCT4 and H3K9ac was analyzed by flow cytometry at passages 3 (P3), 5 (P5) and 7 (P7). Results: The OCT4 protein level was similar at P3 and P5 but a significant decrease in its level was seen at P7. The highest and lowest levels of H3K9ac were observed at P5 and P7, respectively. At P5, the expression of HDACs and DNMTs was significantly decreased. In contrast, a remarkable increase in the expression of DNMTs was observed at P7. Conclusion: Our data demonstrated that the epigenetic status of BADSCs was variable during culture. The P5 cells showed the highest level of stemness and multipotency and the lowest level of chromatin compaction. Therefore, we suggest that P5 cells may be more efficient for SCNT compared with other passages

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
    corecore